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Abstract
We study spectral statistics of a Gaussian unitary critical ensemble of almost
diagonal Hermitian random matrices with off-diagonal entries 〈|Hij |2〉 ∼
b2|i − j |−2 small compared to diagonal ones 〈|Hii |2〉 ∼ 1. Using the recently
suggested method of virial expansion in the number of interacting energy
levels (Yevtushenko and Kravtsov 2003 J. Phys. A: Math. Gen. 36 8265),
we calculate a coefficient ∝b2 � 1 in the level compressibility χ(b). We
demonstrate that only the leading terms in χ(b) coincide for this model and for
an exactly solvable model suggested by Moshe et al (1994 Phys. Rev. Lett. 73
1497), the sub-leading terms ∼b2 being different. Numerical data confirm our
analytical calculation.

PACS numbers: 02.10.Yn, 71.23.−k, 71.23.An

1. Introduction

1.1. Critical power-law banded random matrices and exactly solvable models

Recently, there has been an increasing interest to unconventional random matrix theories
(RMTs) that interpolate between the Wigner–Dyson RMT and banded RM with the (almost)
Poissonian level statistics. One of these models is the power-law banded random matrix
theory [1–3] for which the variance of the off-diagonal elements takes the form

PLBRM : 〈|Vij |2〉 = 1

2

1

1 +
(

N
πb

sin
(

π
N

|i − j |))2α
. (1)

Here N is the matrix size; α and b are two parameters which control statistical properties of
PLBRM. The variance (1) is nearly constant inside the band |i − j | < b, and decreases as
a power-law function 〈|Vij |2〉∼1/|i − j |−2α for |i − j | > b. The case α > 1 corresponds
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to the power-law localization which can be found in certain periodically driven quantum-
mechanical systems [4]. If α � 1/2 the spectral statistics of PLBRM approaches that of
the Wigner–Dyson RMT. The special case α = 1 is relevant for the description of critical
systems with multifractal eigenstates [1–3, 5, 6], in particular for systems at the Anderson
localization–delocalization transition point. On the other hand, it has been conjectured [7]
that the spectral statistics of critical PLBRM with large b can be mapped onto the Calogero–
Sutherland model (CS) [8] at low temperature T ∼1/b. According to this mapping instead of
the spectral problem of random matrices one studies the statistics of one-dimensional fermions
in a parabolic confinement potential interacting with the inverse square potential (xi − xj )

−2

(for real off-diagonal elements in PLBRM, or the orthogonal ensemble ) or non-interacting (for
complex off-diagonal elements in PLBRM with identical distribution of real and imaginary
parts, or the unitary ensemble).

However, there is a RMT for which the mapping onto the CS model is exact [9]. This is
the model of Moshe, Neuberger and Shapiro (MNS) [10]. The probability distribution of the
Hamiltonian Ĥ in MNS is given by P(Ĥ) = ∫

dÛ PÛ (Ĥ), where

PÛ (Ĥ) ∝ exp

(
−Tr Ĥ2 −

(
N

2πb

)2

Tr([Û , Ĥ][Û , Ĥ]†)

)
; (2)

the matrix Û is either unitary (for H from the unitary ensemble) or orthogonal (for H from
the orthogonal ensemble), and dÛ is the Haar measure.

The connection between PLBRM and MNS is especially clear in the unitary case [3],
where the unitary matrix Û = M diag{eιϕi }M† can be diagonalized by a unitary transformation.
Then the variances of Vi,j = (M†ĤM)i,j in MNS at given phases ϕi are

MNS : 〈|Vij |2〉 = 1

2

1

1 +
(

N
πb

)2
sin2

( ϕi−ϕj

2

) . (3)

One can easily see that equation (3) coincides with equation (1) at α = 1 if the phases
ϕn = 2πn/N are arranged as an ordered array on a circle. In general, the MNS model can
be considered as an extension of the PLBRM model for the case of a random arrangement of
phases ϕn distributed over the circle with the joint probability distribution P({ϕ}) [10]:

P({ϕ}) ∼
∏
i>j

sin2
( ϕi−ϕj

2

)
1 +

(
N
πb

)2
sin2

( ϕi−ϕj

2

) . (4)

The averaged value of an observable A(Ĥ ), which is invariant under the transformation
Ĥ → M†ĤM , can be calculated as

〈〈A〉Ĥ 〉Û ≡
∫ 〈A〉Ĥ P ({ϕi})D{ϕi}∫

P({ϕi})D{ϕi} . (5)

Here 〈A〉Ĥ stands for the averaging over the Gaussian random matrix Ĥ with entries having
zero mean value and the variance given by equation (3).

The two-point correlation function, which follows from equation (4) after the integration
over all but two phases, was calculated by Gaudin with the help of the model of free non-
interacting fermions with a linear spectrum [11]:

R2(s) = 1 − 1

(2πb)2

∣∣∣∣∣
∫ ∞

− log(e2πb−1)

ei ωs
b dω

eω + 1

∣∣∣∣∣
2

, s ≡ (ϕi − ϕj )(N/2π). (6)

If |s| 	 b, the correlation function is almost constant R2(|s| 	 b) → 1. There is a repulsion
between phases at a small scale controlled by b: R2(|s| � b) ∼ (s/b)2.
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1.2. Spectral statistics of MNS and PLBRM

The level statistics of RMT is characterized by the density of states

ρ(E) =
〈

N∑
n=1

δ(E − εn)

〉
, (7)

and its multi-point correlation functions. For example, the two-level correlation function R(ω)

is defined as

R(ω) = 〈〈ρ(ω/2)ρ(−ω/2)〉〉
〈ρ(0)〉2

, 〈〈âb̂〉〉 ≡ 〈âb̂〉 − 〈â〉〈b̂〉. (8)

The Fourier transform of R(ω) is known as the spectral form factor K(t):

K(t) =
∫ +∞

−∞
eiωtR(ω) dω. (9)

We rescale time by the mean level spacing


 ≡ 1

〈ρ(0)〉 (10)

introducing the dimensionless time τ = t
. In the limit of small time the spectral form
factor K(τ → 0) is linked to the other important spectral characteristics called the level
compressibility [12]:

χ = lim
τ→0

( lim
N→∞

K(τ)). (11)

The meaning of χ is the following: let us take a window of the width δE, δE/
 ≡ n̄ � N ,
in the energy space centred at E = 0 and calculate the number n of levels inside the window
at some realization of disorder. The level number variance is �2(n̄) = 〈(n − n̄)2〉. The level
compressibility is by definition the limit

χ = lim
n̄→∞

(
lim

N→∞
∂�2(n̄)

∂n̄

)
. (12)

The level compressibility contains information about the localization transition: χ ranges
from χWD = 0 for the Wigner–Dyson statistics with extended wavefunctions and a strong
levels repulsion to χP = 1 in the case of localized wavefunctions and uncorrelated levels with
a Poissonian distribution. The intermediate situation

0 < χcrit < 1

is inherent for the critical regime of multifractal wavefunctions [12].
The exact expression for the level compressibility in the unitary MNS reads [13]

χMNS =
Li− 1

2
[1 − exp(2πb)]

Li+ 1
2
[1 − exp(2πb)]



{

1/(4πb), b 	 1,

1 − √
2πb, b � 1,

(13)

where Li is the polylogarithm function [14]. One can see that χMNS obeys an inequality
0 < χMNS < 1, at any finite b.

Moreover, the level statistics of MNS and of critical PLBRM are asymptotically the same
in two limits: b → 0 and b → ∞.

If b 	 1, the theory of critical PLBRM with α = 1 can be rigorously developed by
mapping [1] onto the nonlinear supersymmetric σ -model [15]. One can show that the level
statistics of critical PLBRM approaches the Wigner–Dyson statistics [2, 3, 7]. In particular,
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the level compressibility of PLBRM goes to zero and asymptotically coincides with the
compressibility for MNS:

b 	 1 ⇒ χPLBRM|α=1 
 χMNS 
 1

4πb
+ O(b−2) � 1. (14)

This is because the phase repulsion in MNS is strong at large b. The phases ϕi,j form an
approximately equidistant lattice-like structure [3].

In the opposite case b � 1, the phase repulsion in MNS is weak and the phases ϕi,j

do not form a regular structure. The disorder in the phase arrangements at a small distance
|ϕi − ϕj | � 1/N may become especially important and, therefore, there is no a priori evident
correspondence between critical PLBRM and MNS at b � 1.

Let us consider the N → ∞ limit of equation (1) at α = 1. If b � 1 the off-diagonal
matrix elements of such a PLBRM are parametrically small compared to the diagonal ones:

α = 1, b � 1 :
〈
ε2
i

〉 = 1

β
	 〈|Vij |2〉 
 b2F(i − j), F(i − j) = 1

2

1

(i − j)2
. (15)

We will refer to equation (15) as the almost diagonal critical PLBRMs. The parameter β

corresponds to the Dyson symmetry classes: βGOE = 1 for the Gaussian orthogonal ensemble,
and βGUE = 2 for the Gaussian unitary ensemble.

This model cannot be mapped onto the nonlinear sigma model as the mapping is only
justified if b 	 1. At b � 1, the compressibility of PLBRM and MNS is close to the
Poissonian value χP = 1. The leading correction of the order of O(b) was derived in [2, 16]
using an approximation of two interacting levels first suggested in [6]. Surprisingly, disorder
in the arrangement of MNS phases does not influence χ and the compressibilities for PLBRM
and MNS are again asymptotically the same:

b � 1 ⇒ χP − χPLBRM|α=1 
 χP − χMNS 

√

2πb + O(b2) � 1. (16)

1.3. Formulation of the problem

A natural question arises as to whether the level rigidities of critical PLBRM and MNS coincide
at an arbitrary b ∼ 1. The numerical simulations [13] did not exclude such a possibility. The
main result of this paper is that it is not the case: the sub-leading corrections of order O(b2)

are different in those two models. To prove this statement we analytically calculate the second
coefficient of the virial expansion [16] for the level compressibility for the critical PLBRM of
the unitary symmetry class and compare it with the exact result (13) for MNS.

As the analytical calculation is quite involved we undertook an extensive numerical
investigation of the same problem and found an excellent agreement with the analytical
prediction.

This paper is organized as follows: we briefly discuss the virial expansion in section 2
and re-derive equation (16) as the first virial coefficient in section 3. The main result of the
present paper, namely, the second virial coefficient for unitary critical PLBRM, is calculated
in section 4. The analytical result is confirmed by the direct numerical simulations which are
presented in section 4.3. We end the paper with a brief discussion and conclusions.

2. The virial expansion

The virial expansion (VE) is a method that allows us to study spectral statistics of a disordered
system described by a Gaussian ensemble of the Hermitian N × N (N 	 1) almost diagonal
random matrices which have random independent elements [16, 17]:

〈Hi,j 〉 = 0,
〈
H 2

i,i

〉 	 〈|Hi 
=j |2〉.
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It is an expansion in the number of interacting energy levels. Unlike the field-theoretical
approach, VE starts from the Poissonian statistics and yields a regular expansion in powers
of the small parameter controlling the ratio of the off-diagonal elements to the diagonal ones
〈|Hi 
=j |2〉

/〈
H 2

ii

〉 ∼ b2 � 1. The expansion has been represented by the summation of diagrams
which are generated with the help of the Trotter formula. A rigorous selection rule has been
established for the diagrams, which allows us to account for exact contributions of a given
number of resonant and non-resonant interacting levels. The method offers a controllable way
to find an answer to the question when a weak interaction of levels can drive the system from
localization towards criticality and delocalization. An example of the spectral form factor has
been considered in [16] for a generic dependence of the variance 〈|Hi 
=j |2〉 on the difference
i − j . It has been shown that a term of the order of bc−1 is governed by the interaction of c

energy levels. VE has been applied to DOS in [17].
VE has been described in detail in [16]. Here, we repeat only its basic definitions and

final results which will be applied to the model (15). VE deals with the following correlation
function in the time domain:

K̃(N, τ) = 1

N
〈〈Tr e−iĤ τ/
 Tr eiĤ τ/
〉〉 ≡ K̃0(N, τ) + bK̃1(N, τ) + b2K̃2(N, τ) + · · · . (17)

For the constant mean density of states K̃ coincides with K . However, they are different if
〈ρ(E)〉 essentially depends on energy E. In analogy with equation (11) one can define the
quantity

χ0 ≡ lim
τ→0

( lim
N→∞

K̃(N, τ)). (18)

It turns out that at small b there is a simple approximate relationship between χ and χ0 (see
the appendix of the paper [16]):

χ 
 1 − 1 − χ0

ϒ
, ϒ = 


N

∫ +∞

−∞
〈ρ(E)〉2 dE. (19)

The mean density of states for the Gaussian ensemble of almost diagonal RMs with either
localized or (sparse) fractal eigenstates is close to the Gaussian distribution of the diagonal
entries [17]:

〈ρ(E)〉 
 N

√
β

2π
exp

(
−βE2

2

)
⇒ 
 
 1

N

√
2π

β
. (20)

The corrections to this formula start with terms proportional to b2. Thus with an accuracy of
O(b2) the unfolding factor in equation (19) can be taken as ϒ−1 
 √

2.
Each function K̃i is governed by the interaction of the i +1 energy levels. The perturbative

expansion (17) is valid if the limit limN→∞(K̃i) is finite. This can be secured by a separation
of scales: the level interaction is effectively large at the distances |ω| < �int = b
 which are
parametrically smaller than the mean level spacing 
. Otherwise, VE fails and one has to take
into account an infinite number of interacting levels.

3. Leading correction to Poissonian level compressibility

Expansion (17) starts with the Poissonian form factor KP

lim
N→∞

K̃0 = KP = 1

reflecting a distribution of uncorrelated diagonal matrix elements. The functions K̃i are given
by power series in a large parameter

x = Ñ |τ |b, Ñ ≡ 
−1 ∝ N. (21)
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The first correction bK̃1 to the Poissonian spectral statistics is governed by the interaction of
two energy levels. The series for the function K̃1 in GOE and GUE reads

K̃1 = 2
√

πβ

∞∑
k=1

(−1)kC
(2)
β (k)R(1)

N (k)x2k−1, (22)

C
(2)
β=1(k) = (2k − 1)!!

k!(k − 1)!
, (23)

C
(2)
β=2(k) = 1

(k − 1)!
. (24)

In equation (22), we introduce the real-space sum which depends on the correlation function
F defined in equation (15):

R(1)
N (k) ≡ 1

2

∑
m

′
(F(m))k = ζ(2k)

22k
+ O(1/N),

∑
m

′ =
−1∑

m=−N

+
N∑

m=1

, (25)

where ζ is the Riemann zeta function [14]. The 1/N-corrections in (25) yield the dependence
of K̃1 on a parameter |τ |b = x/N .

To derive the compressibility χ0,

χ0 
 1 + bχ
(1)
0 ,

we have to put τ = 0 after doing the limit x → ∞:

χ
(1)
0 = lim

τ→0
( lim
x→∞(K̃1(x, τb))). (26)

The small time limit means that we have to neglect all the 1/N -corrections in equation (25).
It is achieved if one substitutes R(1)(k) = limN→∞ R(1)

N (k) for R(1)
N (k):

R(1)(k) =
∞∑

m=1

(F(m))k. (27)

It is convenient to insert equation (27) into the series (22) and to sum over k prior to the
summation over m:

K̃1(τ = 0) 
 −
√

βπ

∞∑
m=1

x

m2
exp

(
− x2

2m2

) {
I0

(
x2

2m2

)
− I1

(
x2

2m2

)
, β = 1,

1, β = 2.
(28)

Here I0,1(· · ·) are the modified Bessel functions [14]. The sum over m converges at
m ∼ x 	 1; therefore, it can be converted to the integral

∫ ∞
0 dm. After this integration

we find

χ
(1)
0 |β=1 = −2, χ

(1)
0 |β=2 = −π. (29)

4. Correction to level compressibility of order b2

4.1. The second virial coefficient for the critical PLBRM

Now we focus on the term of the order O(b2) in equation (17), which is governed by the
interaction of the three energy levels. In the unitary case, we will be considering below the
expression for K̃2 as [16]
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Figure 1. The integration contours for the variable t : C1 : {Re(t) = a > 0, Im(t) ∈ ] − ∞; +∞[}
and C2 = C+

⋃
C−, where C− = {Re(t) ∈ ]−∞; a], Im(t) = −0}; C+ = {Re(t) ∈

[a;−∞[, Im(t) = +0}. One can put a = +0.

β = 2 : K̃2 = 2√
3

∞∑
k1,k2,k3=0

(−1)k1+k2+k3C(3)(k1, k2, k3)RN(k1, k2, k3)x
2(k1+k2+k3)−2 (30)

C(3) = 2k1k2k3 − k1k2 − k2k3 − k1k3

�(k1 + k2 + k3 − 3/2)

�(k1 − 1/2)

�(k1 + 1)

�(k2 − 1/2)

�(k2 + 1)

�(k3 − 1/2)

�(k3 + 1)
, (31)

RN({ki}) = 1

6

∑
m,n

′
∣∣∣∣
m
=n

[(F(m))k1(F(n))k2(F(|m − n|))k3 ]. (32)

The series on the rhs of equation (30) is three-dimensional. It cannot be reduced to a product
of one-dimensional series because of the function �−1(k1 + k2 + k3 − 3/2) in the coefficient
(31). We will decouple the sums over the indices k1,2,3 using an integral representation [18]
of the function �−1(z) :

1

�(z)
= 1

2πι

∫
C1

exp(t)

tz
dt; (33)

the integration contour C1 is shown in figure 1. Then, we change the order of summations
over ki and integration over t . The real-space summation which is implied in the function RN

has to be done at the last step. We assume further that the sums over m and n converge at large
values of the summation variables and transform the sums into a two-fold integral (in analogy
with the derivation of χ

(1)
0 ). This assumption is verified below (see section 4.2). Using the

identities ∞∑
k=0

(−y)k
�(k − 1/2)

�(k + 1)
= −2

√
π

√
1 + y,

∞∑
k=1

(−y)kk
�(k − 1/2)

�(k + 1)
= −√

π
y√

1 + y

and substituting ∞ for N in the limits of the real-space integrals over m and n (in analogy
with equation (27)) we arrive at the following expression:

K̃2(x, τ = 0) = ιx

6

√
π

3

∫ ∫ +∞

−∞
dm dn

∫
C1

dt exp(t)P̄|n|P̄|m|(P̄|m−n| − 3Q̄|m−n|), (34)

where

P(y) = y√
1 + y

, P̄|j | ≡
√

t

x
P

(
x2

j 2t

)
, (35)
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Q(y) =
√

1 + y, Q̄|j | ≡
√

t

x
Q

(
x2

j 2t

)
, (36)

and we have absorbed 1/
√

2 into x obtaining 1/2 as a common prefactor. The integrand in
equation (34) as the function of t has a branching point t = 0. A branch cut may be drawn
along the negative semi-axis. Since the integrand in equation (34) is zero if |t | → ∞ at
Re(t) � a = +0 and has poles neither in upper nor in lower half-plains, we can transform
the integration contour C1 into C2 = C+

⋃
C− (see figure 1) which encloses the branch cut.

Fourier transforming the functions (35) and (36) and using a scaled spatial coordinate

J = j/x,

we find the x-independent expression for K̃2:

K̃2(τ = 0) = 4ι

3
√

3π
lim

η→+0

{∫ +∞

0
dM

∫
C2

dt exp(t)F 2
1 (F1 − 3F2)

}
, (37)

F1 (M, t) =
∫ +∞

η

dJ
cos(JM)

J
√

1 + J 2t
, (38)

F2 (M, t) =
∫ +∞

η

dJ
cos(JM)

J

√
1 + J 2t . (39)

We have introduced an infinitesimal positive constant η, which regularizes the integrals (38)
and (39) at small distances. We will show that K̃2(τ = 0) is finite at η → +0 thus proving
that the small distances do not play a role.

Let us separate out real and imaginary parts of F1,2(M, t ∈ C2) accounting for a branch
cut of F1,2 as functions of t along the negative semi-axis:

F1,2|t∈C2 = F
(−)
1,2 (M) + ι sign(Im(t))F

(+)
1,2 (M), M ≡ M√|t | ,

sign(Im(t)) =
{

1, if t ∈ C+,

−1, if t ∈ C−;

F
(+)
1 =

∫ +∞

1
dJ ′ cos(MJ ′)

J ′√1 − (J ′)2
= −π

2

∫ ∞

M

dy J0(y), (40)

F
(+)
2 =

∫ +∞

1
dJ ′ cos(MJ ′)

m

√
1 − (J ′)2 = F

(+)
1 (M) +

π

2
(2δ(M) − J1(M)); (41)

F
(−)
1 =

∫ 1

η

dJ ′ cos(MJ ′)

J ′√1 − (J ′)2
= −π

2

∫ M

0
dy H0(y) + [Ci(M) − Ci(ηM)], (42)

F
(−)
2 =

∫ 1

η

dJ ′ cos(MJ ′)
J ′

√
1 − (J ′)2 = F

(+)
1 (M) − π

2
H−1(M). (43)

Here, J0,1 are the Bessel functions, H0,−1 are the Struve functions and Ci is the cosine integral
function [14]. We will use the property

lim
η→+0

[Ci(M) − Ci(ηM) + log(η)] = 0.

One can see that the integral of the real part of F 2
1 (F1 − 3F2) over t is zero due to a

cancellation of the integrals over C+ and C−. Thus, we may keep only the imaginary part of
F 2

1 (F1 − 3F2) in equation (37):
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F 2
1 (F1 − 3F2) → ι sign(Im(t))[�1(M) + �2(M)], (44)

�1(M) ≡ 3
(
F

(+)
1

)2
F

(+)
2 − (

F
(+)
1

)3
, (45)

�2(M) ≡ 3
(
F

(−)
1

)2(
F

(+)
1 − F

(+)
2

) − 6F
(−)
1 F

(−)
2 F

(+)
1 . (46)

We insert equation (44) into expression (37):

ι

∫ +∞

0
dMF 2

1 (F1 − 3F2)

∫
C2

dt exp(t) → 2
∫ +∞

0
dM(�1 + �2)

∫ ∞

0
dt

√
t exp(−t), (47)

and integrate over t obtaining

χ
(2)
0 = 4

3
√

3
lim

η→+0

{∫ +∞

0
dM(�1(M) + �2(M))

}
. (48)

Let us consider the first integral on the rhs of equation (48):

I1 ≡
∫ +∞

0
dM�1(M)

=
(π

2

)3
∫ +∞

0
dM

{
3

(∫ ∞

M

dy J0(y)

)2

(2δ(M) − J1(M)) − 2

(∫ ∞

M

dy J0(y)

)3
}

.

(49)

We note that the integrals in equation (49) does not contain the regularizer η. The first term
with the δ-function can be immediately integrated using

∫ ∞
0 dy J0(y) = 1 [18]. The other two

terms can be integrated by parts with the help of the standard integrals containing the Bessel
functions [18]. The result reads

I1 = 3π3

4

∫ ∞

0
dM(M[J0(M)]3) =

√
3π2

2
. (50)

Finally, we have to calculate the second integral on the rhs of equation (48):

I2 ≡
∫ +∞

0
dM�2(M) = 6

(π

2

)3
lim

�→+∞

[ ∫ �

0
dM

{(∫ M

0
dyH0(y) − log(η)

)2

×
(

J1(M)

2
− δ(M) +

∫ ∞

M

dy J0(y)

)
+ H−1(M)

+

(∫ M

0
dy H0(y) − log(η)

)∫ ∞

M

dy J0(y)

}]
. (51)

Unlike the integral I1, the regularizer of the small distances η enters the expression for
the integral I2. We have also introduced the upper limit of the integration over M before
integrating equation (51) by parts. At intermediate stages, the boundary terms of the integration
by parts, which result from the different parts of the integrand on the rhs of (51), diverge in
the limits η → 0 and � → ∞. However, the diverging contributions exactly cancel out at the
end so that the final answer for I2 does not depend on η and is finite in the limit � → ∞. For
example, the coefficient in front of log2(η)

lim
�→+∞

{∫ �

0
dM

(
J1(M)

2
− δ(M) +

∫ ∞

M

dy J0(y)

)}
is zero because∫ ∞

0
dy J1(y) = 2

∫ ∞

0
dy δ(y) = 1,



2030 V E Kravtsov et al

lim
�→+∞

{∫ �

0
dM

∫ ∞

M

dy J0(y)

}
= − lim

�→+∞

{
�

(∫ ∞

�

dy
J1(y)

y

)}
∝ lim

�→+∞
1√
�

= 0.

The cancellation of log(η) can be checked in a similar way. We have thus proven that the
regularization of the Fourier images (38) and (39) does not affect the level compressibility.

We skip a lengthy intermediate integration by parts and present only the answer for I2:

I2 = 3π2
∫ ∞

0
dM(H0(M)J0(M)) − 9π3

4

∫ ∞

0
dM(MH0(M)2J0(M)). (52)

To our best knowledge, the integrals of a combination of the Bessel function and the Struve
function on the rhs of equation (52) are not included in the standard handbooks. We describe
their calculation in appendices. Here, we give the results∫ ∞

0
dM(H0(M)J0(M)) = 1

2
, (53)

∫ ∞

0
dM(MH0(M)2J0(M)) = 2

π

(
1 − 1√

3

)
, (54)

⇒ I2 = 3π2

2
(
√

3 − 2t), I1 + I2 = (2 −
√

3)
√

3π2, χ
(2)
0 = (2 −

√
3)

4π2

3
.

(55)

We insert formulae (29) and (55) into equation (19) and obtain the expression for the level
compressibility of the critical unitary PLBRMs:

β = 2 : χ = 1 −
√

2

[
(πb) − 4

3
(2 −

√
3)(πb)2

]
+ O(b3). (56)

4.2. Characteristic spatial scale that governs the compressibility

Let us estimate the characteristic spatial scale that governs the second virial coefficient χ
(2)
0 .

Firstly, we note that all integrals over t and M converge at |t |char ∼ 1 (see equations (47)
and (48)) and Mchar ∼ 1 (see equations (50), (53) and (54)). Returning to the spatial variable
j = xJ , we may estimate its characteristic scale:

jchar ∼ xJchar ∼ x/Mchar ∼ x
√

|t |char/Mchar ∼ x 	 1.

Therefore, χ
(2)
0 is governed by the large distances m, n, (m − n) ∼ x 	 1 (see

equation (34)). We have verified the self-consistency of our calculation scheme for χ
(2)
0 ;

namely, the replacement of the real-space sum by the integral is justified.
The first virial coefficient χ

(1)
0 is also governed by the large distances of the order of

x (see equation (28)). We may conclude that the small distances do not contribute to the
compressibility. One important consequence is that the level compressibility is not sensitive
to the periodicity of the boundary conditions. If we recalculated χ

(1,2)
0 using the spatially

periodic variance (1) instead of (15) we would again arrive at the same results (29) and (55).

4.3. Numerical test of the results

A comparison of the analytical result (56) with the direct numerical calculation of χ is
presented in figure 2. The data correspond to equation (1) with b = 0.1 for the unitary
symmetry, βGUE = 2.

Numerical calculations were done in the range 200 � N � 10 000. The true value of χ

is found from the extrapolation of numerically obtained χ(N) to N → ∞.
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+b

2χ(2)

C2

Figure 2. A comparison of the analytical result (56) with the direct numerical calculation of χ

at b = 0.1: stars mark the result of simulations at the different matrix sizes; the solid line is an
interpolation that yields χ |N→∞ = 0.595 ± 0.005; dashed horizontal lines give the analytical
result χ ≈ 0.605 (56) for b = 0.1; the dotted line presents the compressibility of unitary MNS.
Inset: the coefficient C2 of the polynomial fitting equation (57) for �2 as a function of 1/N .

The number of realizations ranges from 30 000 for the small matrix size (N = 200) to 200
for the larger one (N = 10 000). The level compressibility has been obtained from the level
number variance �2(n̄) = 〈(n − n̄)2〉: �2(n̄) has been calculated in a small energy window
δE ≈ 0.4 at the band centre4. Then, the N -dependent spectral compressibility χ(N) has been
obtained for each value of N as a coefficient of the linear term of a second-order polynomial
fit for �2(n̄) [13]:

�2(n̄, N) = C0(N) + χ(N)n̄ + C2(N)n̄2. (57)

The fitting range is 1 < n̄ < 100. To increase the accuracy, we have done both disorder and
spectral averaging of the data. We have also checked that a small change in the window width
or in the fitting range practically does not change the results.

For the critical RMT, it is expected [13] that both χ and C2 have a pronounced (∝1/N)

N -dependence reflecting the finite size effects in �2(n̄, N). The true value of χ is obtained at
the intersection of the solid line with the vertical axis at the point

χ |N→∞ = 0.595 ± 0.005 (58)

(see figure 2) which should be compared to the analytical results for the critical PLBRM and
the MNS exact result given by equations (56) and (13), respectively,

lim
N→∞

χPLBRM(b = 0.1) = 0.6056, lim
N→∞

χMNS(b = 0.1) = 0.6548. (59)

Given an expectation that the missing term of order b3 ∼ 0.001 is negative (as well as the
term of order b) and thus equation (56) overestimates χ by several parts of 10−3, the numerical
result is very close to the analytical one and is clearly different to the MNS exact result.

The true value of C2 is expected to be zero [13]. Indeed, the numerically obtained
coefficient C2 goes to zero as N increases (see the inset of figure 2). This behaviour of C2

confirms the good quality of our numerics.

4 For the small matrix sizes the window was slightly increased in order to get sufficient averaged number of the
energy levels (around 100) inside the window.
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5. Conclusions and discussion

As we have already mentioned in the introduction, the level compressibility of the unitary
critical PLBRM and of MNS are asymptotically the same both at b 	 1 [2, 3] and at b � 1
with the accuracy up to the terms of orders 1/b and b, respectively. While such a coincidence
is natural at b 	 1, its origin for b � 1 still remains unclear.

The main result of this paper, equation (56), is an analytical calculation of the level
compressibility for the critical PLBRM ensemble up to the terms of order b2 and its comparison
with the corresponding formula for the MNS model of the unitary symmetry class.

Our result (56) shows that the compressibility in MNS is larger compared to PLBRM:

β = 2 : χ |MNS − χ |PLBRM 

√

2

3
(4

√
3(1 +

√
2) − (11 + 3

√
2))(πb)2

in agreement with the numerical simulations for PLBRM (see figure 2). It is also important
that result (56) is expressible in a simple algebraic form. The fact that all the intermediate
sums and integrals can be done exactly in terms of elementary functions is not trivial and may
indicate that the PLBRM theory is exactly solvable.

Thus, we conclude that the level compressibility for PLBRM and MNS is not identical
though very close to each other [13]. It is tempting to assume that the coincidence is a
consequence of a certain relation between χ(b) and χ(1/b) which holds for both models, so
that the asymptotic coincidence in spectral statistics for b 	 1 automatically leads to that for
b � 1. This scenario can also be related to the existence of a field-theoretical description [19]
which is dual to that of the nonlinear sigma model.

Based on the leading terms in the b and 1/b expansions one can guess a possible form of
a relation between χ(b) and χ(1/b) which can then be checked using the b2 and 1/b2 terms.
From this viewpoint our result (56) is also a very useful step.

However, maybe the most important conclusion we may draw from the above
consideration is that the virial expansion method [16] is working and helps to obtain solutions
to very non-trivial problems.
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Appendix. Integrals containing product of Bessel and Struve functions

In this appendix, we compute the integrals

Int1 =
∫ ∞

0
H0(x)J0(x) dx, Int2 =

∫ ∞

0
xH 2

0 (x)J0(x) dx. (A.1)

Integral Int1. Using the integral representation of the Struve function H0 we convert Int1 to
the following form:

Int1 = 2

π
lim

α→+0

∫ 1

0

dt√
1 − t2

Im

(∫ ∞

0
dx J0(x) exp[(−α + ιt)x]

)
.

The inner integral over x is zero [18] at 0 < t < 1, α = 0 and diverges at t = 1, α = 0.∫ ∞

0
dxJ0(x) sin

(
tx

)
=

{
0, if 0 < t < 1,

∞, if t = 1.
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Thus, we see that Int1 is determined by the integration over a small vicinity of the point t = 1.
The infinitesimal parameter α has been introduced to solve an uncertainty ‖0 × ∞‖ with
zero coming from the phase volume at t → 1. We calculate the integral over x keeping the
finite α:

Int1 = − 1

π
lim

α→+0

∫ 1

0

dt ′√
t ′

Im

{
1√

t ′ − ια

}
≡ 1

π

∫ ∞

0

dz√
z(z2 + 1)

Re{
√

−(z + ι)},

t ′ = 1 − t, z = t ′

α
.

(A.2)

Answer (53) results from (A.2) after the substitution

− (z + ι) =
√

z2 + 1 exp (ι [π + arctan(1/z)]) .

Integral Int2. Let us introduce two auxiliary three-fold integrals

I
(1,2)
2 = 2

π2

∫ ∫ 1

0

dx√
1 − x2

dy√
1 − y2

∫ ∞

0
dq qJ0(q) cos(q[x ± y]) (A.3)

noting that

I
(1)
2 + I

(2)
2 =

∫ ∞

0
dq qJ 3

0 (q) = 2√
3π

, Int2 = I
(2)
2 − I

(1)
2 ≡ 2I

(2)
2 − 2√

3π
.

The idea as how to calculate I
(2)
2 is very similar to the calculation of I1: we use the property

[18] ∫ ∞

0
dq qJ0(q) cos(q[x − y]) =

{
0, if −1 < x − y < 1,

∞, if x − y = ±1,

introduce an infinitesimal regularizing parameter

I
(2)
2 = 2

π2
lim

α→+0

∫ ∫ 1

0

dx√
1 − x2

dy√
1 − y2

Re

{∫ ∞

0
dq qJ0(q) exp(−αq + ιq[x − y])

}
,

(A.4)

integrate over q keeping the finite α:

I
(2)
2 = 2

π2
lim

α→+0

∫ ∫ 1

0

dx√
1 − x2

dy√
1 − y2

Re

{ −α + ι[x − y]

(1 + (−α + ι[x − y])2)3/2

}
, (A.5)

and consider only contribution of two small regions {1 − x � 1, y � 1} and {x � 1,

1 − y � 1}. After a lengthy but rather simple algebra we obtain

I
(2)
2 = 1

π

arriving at answer (54).
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